4.6 Article

Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field

期刊

NEW JOURNAL OF PHYSICS
卷 17, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/17/10/103005

关键词

plasma medicine; reactive oxygen species; molecular dynamics; DNA

资金

  1. Fund for Scientific Research-Flanders [G012413N]
  2. Hercules Foundation
  3. Flemish Government (department EWI)
  4. Universiteit Antwerpen
  5. European Research Council through the ERC-Starting Grant THEOFUN [259608]
  6. European Research Council (ERC) [259608] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma-cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered time-scale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据