4.6 Article

Turbulent pair dispersion in the presence of gravity

期刊

NEW JOURNAL OF PHYSICS
卷 17, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/17/3/033010

关键词

turbulence; inertial particles; numerical simulations

资金

  1. US National Science Foundation [AGS-1026123]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [1026123] Funding Source: National Science Foundation

向作者/读者索取更多资源

Turbulent pair dispersion of heavy particles is strongly altered when particles of two different Stokes numbers (bidisperse) are considered, and this is further compounded when a uniform gravitational acceleration is present. Lagrangian trajectories of fluid tracers, and bidisperse heavy particles with and without gravity were calculated from a direct numerical simulation of homogeneous, isotropic turbulence. Particle pair dispersion shows a short-time, ballistic (Batchelor) regime and a transition to super-ballistic dispersion that is suggestive of the emergence of Richardson scaling. A simple equation of motion for inertial, sedimenting particles captures the essential features of the pair dispersion at very short time and length scales. Kolmogorov scaling arguments are able to qualitatively describe the competition between gravity-induced and fluid-induced relative motion in modifying the amount of time the heavy particles spend in the ballistic regime. The transition from ballistic to super-ballistic dispersion for fluid tracers and monodisperse inertial particles exhibits a pronounced sub-ballistic behavior that can be attributed to the mixed velocity-acceleration structure function. The sub-ballistic behavior is strongly suppressed for bidisperse particles, both in the presence or absence of gravity, primarily because of a reduction in the correlation between velocity and acceleration increments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据