4.6 Article

Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 81, 期 13, 页码 4458-4476

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00405-15

关键词

-

资金

  1. Novo Nordisk Foundation
  2. NNF Center for Biosustainability [Bacterial Cell Factory Optimization, Yeast Metabolic Engineering] Funding Source: researchfish
  3. Novo Nordisk Fonden [NNF10CC1016517] Funding Source: researchfish

向作者/读者索取更多资源

Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches. We therefore identified 22 sequences in silico using synteny information and aiming for sequence divergence. We performed a comparative in vivo study, expressing the genes intra-cellularly in bacteria and yeast. When produced heterologously, some enzymes resulted in significantly higher production of p-coumaric acid in several different industrially important production organisms. Three novel enzymes were found to have activity exclusively for phenylalanine, including an enzyme from the low-GC Gram-positive bacterium Brevibacillus laterosporus, a bacterial-type enzyme from the amoeba Dictyostelium discoideum, and a phenylalanine ammonia-lyase from the moss Physcomitrella patens (producing 230 mu M cinnamic acid per unit of optical density at 600 nm [OD600]) in the medium using Escherichia coli as the heterologous host). Novel tyrosine ammonia-lyases having higher reported substrate specificity than previously characterized enzymes were also identified. Enzymes from Herpetosiphon aurantiacus and Flavobacterium johnsoniae resulted in high production of p-coumaric acid in Escherichia coli (producing 440 mu M p-coumaric acid OD600 unit(-1) in the medium) and in Lactococcus lactis. The enzymes were also efficient in Saccharomyces cerevisiae, where p-coumaric acid accumulation was improved 5-fold over that in strains expressing previously characterized tyrosine ammonia-lyases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据