4.7 Article

Method to detect only live bacteria during PCR amplification

期刊

JOURNAL OF CLINICAL MICROBIOLOGY
卷 46, 期 7, 页码 2305-2313

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JCM.02171-07

关键词

-

向作者/读者索取更多资源

Ethidium monoazide (EMA) is a DNA cross-linking agent and eukaryotic topoisomerase II poison. We previously reported that the treatment of EMA with visible light irradiation (EMA + Light) directly cleaved chromosomal DNA of Escherichia coli (T. Soejima, K. Iida, T. Qin, H. Taniai, M. Seki, A. Takade, and S. Yoshida, Microbiol. Immunol. 51: 763-775, 2007). Herein, we report that EMA + Light randomly cleaved chromosomal DNA of heat-treated, but not live, Listeria monocytogenes cells within 10 min of treatment. When PCR amplified DNA that was 894 bp in size, PCR final products from 10(8) heat-treated L. monocytogenes were completely suppressed by EMA + Light. When target DNA was short (113 bp), like the hly gene of L. monocytogenes, DNA amplification was not completely suppressed by EMA + Light only. Thus, we used DNA gyrase/topoisomerase IV and mammalian topoisomerase poisons (here abbreviated as T-poisons) together with EMA + Light. T-poisons could penetrate heat-treated, but not live, L. monocytogenes cells within 30 min to cleave chromosomal DNA by poisoning activity. The PCR product of the hly gene from 10(8) heat-treated L. monocytogenes cells was inhibited by a combination of EMA + Light and T-poisons (EMA + Light + T-poisons), but those from live bacteria were not suppressed. As a model for clinical application to bacteremia, we tried to discriminate live and antibiotic-treated L. monocytogenes cells present in human blood. EMA + Light + T-poisons completely suppressed the PCR product from 10(3) to 10(7) antibiotic-treated L. monocytogenes cells but could detect 10(2) live bacteria. Considering the prevention and control of food poisoning, this method was applied to discriminate live and heat-treated L. monocytogenes cells spiked into pasteurized milk. EMA + Light + T-poisons inhibited the PCR product from 10(3) to 10(7) heat-treated cells but could detect 10(1) live L. monocytogenes cells. Our method is useful in clinical as well as food hygiene tests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据