4.8 Article

Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 121, 期 10, 页码 4015-4029

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI45862

关键词

-

资金

  1. NIH [CA084488, CA136828]
  2. flow cytometry and analytic microscopy cores at H. Lee Moffitt Cancer Center

向作者/读者索取更多资源

Cancer immunotherapeutic approaches induce tumor-specific immune responses, in particular CTL responses, in many patients treated. However, such approaches are clinically beneficial to only a few patients. We set out to investigate one possible explanation for the failure of CTLs to eliminate tumors, specifically, the concept that this failure is not dependent on inhibition of T cell function. In a previous study, we found that in mice, myeloid-derived suppressor cells (MDSCs) are a source of the free radical peroxynitrite (PNT). Here, we show that pretreatment of mouse and human tumor cells with PNT or with MDSCs inhibits binding of processed peptides to tumor cell-associated MHC, and as a result, tumor cells become resistant to antigen-specific CTLs. This effect was abrogated in MDSCs treated with a PNT inhibitor. In a mouse model of tumor-associated inflammation in which the antitumor effects of antigen-specific CTLs are eradicated by expression of IL-1 beta in the tumor cells, we determined that therapeutic failure was not caused by more profound suppression of CTLs by IL-1 beta-expressing tumors than tumors not expressing this proinflammatory cytokine. Rather, therapeutic failure was a result of the presence of PNT. Clinical relevance for these data was suggested by the observation that myeloid cells were the predominant source of PNT in human lung, pancreatic, and breast cancer samples. Our data therefore suggest what we believe to be a novel mechanism of MDSC-mediated tumor cell resistance to CTLs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据