4.7 Article

Intraseasonal and Interdecadal Jet Shifts in the Northern Hemisphere: The Role of Warm Pool Tropical Convection and Sea Ice

期刊

JOURNAL OF CLIMATE
卷 27, 期 17, 页码 6497-6518

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-14-00057.1

关键词

-

资金

  1. National Science Foundation [AGS-1139970, AGS-1036858, AGS-1401220]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [1401220, 1139970] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study uses cluster analysis to investigate the interdecadal poleward shift of the subtropical and eddy-driven jets and its relationship to intraseasonal teleconnections. For this purpose, self-organizing map (SOM) analysis is applied to the ECMWF Interim Re-Analysis (ERA-Interim) zonal-mean zonal wind. The resulting SOM patterns have time scales of 4.8-5.7 days and undergo notable interdecadal trends in their frequency of occurrence. The sum of these trends closely resembles the observed interdecadal trend of the subtropical and eddy-driven jets, indicating that much of the interdecadal climate forcing is manifested through changes in the frequency of intraseasonal teleconnection patterns. Two classes of jet cluster patterns are identified. The first class of SOM pattern is preceded by anomalies in convection over the warm pool followed by changes in the poleward wave activity flux. The second class of patterns is preceded by sea ice and stratospheric polar vortex anomalies; when the Arctic sea ice area is reduced, the subsequent planetary wave anomalies destructively interfere with the climatological stationary waves. This is followed by a decrease in the vertical wave activity flux and a strengthening of the stratospheric polar vortex. An increase in sea ice area leads to the opposite chain of events. Analysis suggests that the positive trend in the Arctic Oscillation (AO) up until the early 1990s might be attributed to increased warm pool tropical convection, while the subsequent reversal in its trend may be due to the influence of tropical convection being overshadowed by the accelerated loss of Arctic sea ice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据