4.7 Article

Land-Ocean Warming Contrast over a Wide Range of Climates: Convective Quasi-Equilibrium Theory and Idealized Simulations

期刊

JOURNAL OF CLIMATE
卷 26, 期 12, 页码 4000-4016

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-12-00262.1

关键词

Convection; Atmosphere-land interaction; Climate change; Soil moisture; Surface temperature

资金

  1. MIT Joint Program on the Science and Policy of Global Change
  2. NSF grant [AGS-1148594]
  3. Div Atmospheric & Geospace Sciences
  4. Directorate For Geosciences [1148594] Funding Source: National Science Foundation

向作者/读者索取更多资源

Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land-ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land-ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K. The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50 degrees when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land-ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land-ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据