4.7 Article

Autumn Precipitation Trends over Southern Hemisphere Midlatitudes as Simulated by CMIP5 Models

期刊

JOURNAL OF CLIMATE
卷 26, 期 21, 页码 8341-8356

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-13-00007.1

关键词

Southern Hemisphere; Annular mode; Hadley circulation; Precipitation; Climate change; General circulation models

资金

  1. Goyder Institute for Water Research
  2. Australian Climate Change Science Program (ACCSP)

向作者/读者索取更多资源

In recent decades, Southern Hemisphere midlatitude regions such as southern Africa, southeastern Australia, and southern Chile have experienced a reduction in austral autumn precipitation; the cause of which is poorly understood. This study focuses on the ability of global climate models that form part of the Coupled Model Intercomparison Project phase 5 to simulate these trends, their relationship with extratropical and subtropical processes, and implications for future precipitation changes. Models underestimate both the historical autumn poleward expansion of the subtropical dry zone and the positive southern annular mode (SAM) trend. The multimodel ensemble (MME) is also unable to capture the spatial pattern of observed precipitation trends across semiarid midlatitude regions. However, in temperate regions that are located farther poleward such as southern Chile, the MME simulates observed precipitation declines. The MME shows a strong consensus in twenty-first-century declines in autumn precipitation across southern Chile in both the medium-low and high representative concentration pathway (RCP) scenarios and across southern Africa in the high RCP scenario, but little change across southeastern Australia. Projecting a strong positive SAM trend and continued subtropical dry-zone expansion, the models converge on large SAM and dry-zone-expansion-induced precipitation declines across southern midlatitudes. In these regions, the strength of future precipitation trends is proportional to the strength of modeled trends in these phenomena, suggesting that unabated greenhouse gas-induced climate change will have a large impact on austral autumn precipitation in such midlatitude regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据