4.7 Article

ENSO Transition, Duration, and Amplitude Asymmetries: Role of the Nonlinear Wind Stress Coupling in a Conceptual Model

期刊

JOURNAL OF CLIMATE
卷 26, 期 23, 页码 9462-9476

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-13-00045.1

关键词

Atmosphere-ocean interaction; ENSO; Numerical analysis; modeling; Southern Oscillation

资金

  1. National Oceanic and Atmospheric Administration [NA08OAR4320752]
  2. U.S. Department of Commerce [NA08OAR4320752]

向作者/读者索取更多资源

The El Nino-Southern Oscillation (ENSO) exhibits well-known asymmetries: 1) warm events are stronger than cold events, 2) strong warm events are more likely to be followed by cold events than vice versa, and 3) cold events are more persistent than warm events. Coupled GCM simulations, however, continue to underestimate many of these observed features.To shed light on these asymmetries, the authors begin with a widely used delayed-oscillator conceptual model for ENSO and modify it so that wind stress anomalies depend more strongly on SST anomalies (SSTAs) during warm conditions, as is observed. Then the impact of this nonlinearity on ENSO is explored for three dynamical regimes: self-sustained oscillations, stochastically driven oscillations, and self-sustained oscillations disrupted by stochastic forcings. In all three regimes, the nonlinear air-sea coupling preferentially strengthens the feedbacks (both positive and delayed negative) during the ENSO warm phaseproducing El Ninos that grow to a larger amplitude and overshoot more rapidly and consistently into the opposite phase, than do the La Ninas. Finally, the modified oscillator is applied to observational records and to control simulations from two global coupled ocean-atmosphere-land-ice models [Geophysical Fluid Dynamics Laboratory Climate Model version 2.1 (GFDL CM2.1) and version 2.5 (GFDL CM2.5)] to elucidate the causes of their differing asymmetries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据