4.7 Article

Response of Ice and Liquid Water Paths of Tropical Cyclones to Global Warming Simulated by a Global Nonhydrostatic Model with Explicit Cloud Microphysics

期刊

JOURNAL OF CLIMATE
卷 26, 期 24, 页码 9931-9945

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-13-00182.1

关键词

Cloud cover; Tropical cyclones; Climate models; Climate variability

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan
  2. Program for Generation of Climate Change Risk Information and Strategic Programs for Innovative Research Field 3
  3. MEXT

向作者/读者索取更多资源

Cloud feedback plays a key role in the future climate projection. Using global nonhydrostatic model (GNHM) simulation data for a present-day [control (CTL)] and a warmer [global warming (GW)] experiment, the authors estimate the contribution of tropical cyclones (TCs) to ice water paths (IWP) and liquid water paths (LWP) associated with TCs and their changes between CTL and GW experiments. They use GNHM with a 14-km horizontal mesh for explicitly calculating cloud microphysics without cumulus parameterization. This dataset shows that the cyclogenesis under GW conditions reduces to approximately 70% of that under CTL conditions, as shown in a previous study, and the tropical averaged IWP (LWP) is reduced by approximately 2.76% (0.86%). Horizontal distributions of IWP and LWP changes seem to be closely related to TC track changes. To isolate the contributions of IWP/LWP associated with TCs, the authors first examine the radial distributions of IWP/LWP from the TC center at their mature stages and find that they generally increase for more intense TCs. As the intense TC in GW increases, the IWP and LWP around the TC center in GW becomes larger than that in CTL. The authors next define the TC area as the region within 500 km from the TC center at its mature stages. They find that the TC's contribution to the total tropical IWP (LWP) is 4.93% (3.00%) in CTL and 5.84% (3.69%) in GW. Although this indicates that the TC's contributions to the tropical IWP/LWP are small, IWP/LWP changes in each basin behave in a manner similar to those of the cyclogenesis and track changes under GW.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据