4.7 Article

Climate Feedbacks and Their Implications for Poleward Energy Flux Changes in a Warming Climate

期刊

JOURNAL OF CLIMATE
卷 25, 期 2, 页码 608-624

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-11-00096.1

关键词

-

资金

  1. NASA [NNX09AH73G, NNX06AF69H]
  2. Lawrence Livermore National Laboratory
  3. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

Feedbacks determine the efficiency with which the climate system comes back into equilibrium in response to a radiative perturbation. Although feedbacks are integrated quantities, the processes from which they arise have rich spatial structures that alter the distribution of top of atmosphere (TOA) net radiation. Here, the authors investigate the implications of the structure of climate feedbacks for the change in poleward energy transport as the planet warms over the twenty-first century in a suite of GCMs. Using radiative kernels that describe the TOA radiative response to small perturbations in temperature, water vapor, and surface albedo, the change in poleward energy flux is partitioned into the individual feedbacks that cause it. This study finds that latitudinal gradients in the sum of climate feedbacks reinforce the preexisting latitudinal gradient in TOA net radiation, requiring that the climate system transport more energy to the poles on a warming planet. This is primarily due to structure of the water vapor and cloud feedbacks, which are strongly positive at low latitudes and decrease dramatically with increasing latitude. Using the change in surface fluxes, the authors partition the anomalous poleward energy flux between the atmosphere and ocean and find that reduced heat flux from the high-latitude ocean further amplifies the equator-to-pole gradient in atmospheric energy loss. This implied reduction in oceanic poleward energy flux requires the atmosphere to increase its share of the total poleward energy transport. As is the case for climate sensitivity, the largest source of intermodel spread in the change in poleward energy transport can be attributed to the shortwave cloud feedback.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据