4.7 Article

Thermally Driven and Eddy-Driven Jet Variability in Reanalysis

期刊

JOURNAL OF CLIMATE
卷 25, 期 5, 页码 1587-1596

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-11-00145.1

关键词

-

向作者/读者索取更多资源

Two important dynamical processes influence the extratropical zonal wind field: angular momentum transport by the thermally direct Hadley circulation (thermal-driving T) and momentum flux convergence by atmospheric waves (eddies) that develop in regions of enhanced baroclinicity (eddy-driving E). The relationship between extratropical zonal wind variability and these driving processes is investigated using 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40) data. Indices representing the processes (iT and iE) are defined based on vertically integrated diabatic heating and meridional convergence of the meridional flux of zonal momentum by eddies, respectively. Zonal wind signatures associated with these indices are identified via composite analysis. In the Atlantic sector, zonal wind variability is mainly associated with momentum flux convergence by baroclinic eddies, supporting the established view that the Atlantic jet is primarily eddy driven. In the Pacific sector, zonal wind variability is associated with both driving processes, evidence that the Pacific jet is both thermally driven and eddy driven. The thermally driven Pacific signature reflects changes in jet strength (intensity and longitudinal extent) with some resemblance to the zonal wind anomalies of the Pacific-North America (PNA) pattern. The eddy-driven signature reflects a latitudinal shift of the jet exit region in both sectors that resembles the zonal wind anomalies of the North Atlantic Oscillation (NAO) or West Pacific (WP) patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据