4.7 Article

On the Correspondence between Short- and Long-Time-Scale Systematic Errors in CAM4/CAM5 for the Year of Tropical Convection

期刊

JOURNAL OF CLIMATE
卷 25, 期 22, 页码 7937-7955

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI-D-12-00134.1

关键词

-

资金

  1. Office of Science at the U.S. Department of Energy
  2. U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

The correspondence between short-and long-time-scale systematic errors in the Community Atmospheric Model, version 4 (CAM4) and version 5 (CAM5), is systematically examined. The analysis is based on the annual-mean data constructed from long-term free running simulations and short-range hindcasts. The hindcasts are initialized every day with the ECMWF analysis for the Year(s) of Tropical Convection. It has been found that most systematic errors, particularly those associated with moist processes, are apparent in day 2 hindcasts. These errors steadily grow with the hindcast lead time and typically saturate after five days with amplitudes comparable to the climate errors. Examples include the excessive precipitation in much of the tropics and the overestimate of net shortwave absorbed radiation in the stratocumulus cloud decks over the eastern subtropical oceans and the Southern Ocean at about 60 degrees S. This suggests that these errors are likely the result of model parameterization errors as the large-scale flow remains close to observed in the first few days of the hindcasts. In contrast, other climate errors are present in the hindcasts, but with amplitudes that are significantly smaller than and do not approach their climate errors during the 6-day hindcasts. These include the cold biases in the lower stratosphere, the unrealistic double-intertropical convergence zone pattern in the simulated precipitation, and an annular mode bias in extratropical sea level pressure. This indicates that these biases could be related to slower processes such as radiative and chemical processes, which are important in the lower stratosphere, or the result of poor interactions of the parameterized physics with the large-scale flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据