4.7 Article

Chemistry-Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

期刊

JOURNAL OF CLIMATE
卷 23, 期 20, 页码 5349-5374

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2010JCLI3404.1

关键词

-

资金

  1. European Commission [505390-GOCE-CT-2004]
  2. DECC [GA01101]
  3. Defra [GA01101]
  4. MoD [CBC/2B/0417_Annex C5]
  5. SCOUT [O3]
  6. Ministry of the Environment (MOE) of Japan [A-071]
  7. Canadian Foundation for Climate and Atmospheric Sciences
  8. Directorate For Geosciences
  9. Div Atmospheric & Geospace Sciences [0905863] Funding Source: National Science Foundation
  10. Natural Environment Research Council [NE/D002753/1, NE/C003969/1, NE/D003563/1] Funding Source: researchfish
  11. NERC [NE/D003563/1, NE/D002753/1] Funding Source: UKRI

向作者/读者索取更多资源

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry-climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 +/- 6 0.07 K decade(-1) at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade(-1) at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer-Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade(-1) in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (similar to 70 hPa) increases by almost 2% decade(-1), with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据