4.7 Article

Changes in the Timing of Snowmelt and Streamflow in Colorado: A Response to Recent Warming

期刊

JOURNAL OF CLIMATE
卷 23, 期 9, 页码 2293-2306

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2009JCLI2951.1

关键词

-

资金

  1. Colorado Water Conservation board
  2. U.S. Geological Survey
  3. Denver Water
  4. Northern Colorado Water Conservancy District
  5. Colorado Spring Utilities
  6. Colorado River Water Conservation District

向作者/读者索取更多资源

Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978-2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, non-parametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2-3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November-May air temperatures increased by a median of 0.98 degrees C decade(-1), while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade (1), respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据