4.7 Article

The vertical structure of cloud occurrence and radiative forcing at the SGP ARM site as revealed by 8 years of continuous data

期刊

JOURNAL OF CLIMATE
卷 21, 期 11, 页码 2591-2610

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JCLI1987.1

关键词

-

向作者/读者索取更多资源

Data collected at the Atmospheric Radiation Measurement (ARM) Program ground sites allow for the description of the atmospheric thermodynamic state, cloud occurrence, and cloud properties. This information allows for the derivation of estimates of the effects of clouds on the radiation budget of the surface and atmosphere. Herein 8 yr of continuous data collected at the ARM Southern Great Plains (SGP) Climate Research Facility (ACRF) are analyzed, and the influence of clouds on the radiative flux divergence of solar and infrared energy on annual, seasonal, and monthly time scales is documented. Given the uncertainties in derived cloud microphysical properties that result in calculated radiant flux errors, it is demonstrated that the ability to quantitatively resolve all but the largest heating and cooling influences by clouds is marginal for averaging periods less than 1 month. Concentrating on seasonal and monthly averages, it is found that the net column-integrated radiative effect of clouds on the atmosphere is nearly neutral at this middle-latitude location. However, a net heating of the upper troposphere by upper-tropospheric clouds and a cooling of the lower troposphere by boundary layer clouds is documented. The balance evolves over the course of an annual cycle as the troposphere deepens in summer and boundary layer clouds become less frequent relative to upper-tropospheric clouds. Although the top-of-atmosphere IR radiative effect is nearly invariant through the annual cycle, the seasonally varying heating profile is determined largely by the convergence of IR flux because solar heating is offset by IR cooling within the column.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据