4.7 Article

Assessment on engineering properties and CO2 emissions of recycled aggregate concrete incorporating waste products as supplements to Portland cement

期刊

JOURNAL OF CLEANER PRODUCTION
卷 203, 期 -, 页码 822-835

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2018.08.292

关键词

Sustainable concrete; Compressive strength efficiency; Electrical resistivity; Carbon dioxide emissions; Eco-strength efficiency

资金

  1. University of Malaya through the Innovative Technology Research Cluster [RP037C-15]

向作者/读者索取更多资源

This paper presents an experimental investigation on the durability properties and carbon dioxide (CO2) emissions of concrete developed using waste products. The concrete comprised of recycled concrete aggregate (RA) as a complete coarse aggregate replacement, In addition, rice husk ash (RHA), palm oil fuel ash (POFA) and palm oil clinker powder (POCP) were used as replacement materials for cement at levels up to 30%. The supplementary cementitious materials (SCMs) were used in RA concrete with the aim of reducing the dependency on cement as a stand-alone binder. The compressive strength, water absorption, chloride-ion penetration and electrical resistivity were investigated for RA concrete containing SCMs. Moreover, the residual compressive strength was also examined along with the weight loss to check the elevated temperature resistance of RA concrete with SCMs. The results revealed that the use of 30% RHA as SCM produced the highest compressive strength efficiency of 0.143 MPa/kg cement among all mixes at the age of 90 days. In addition, a significant enhancement was observed for the durability related properties at later ages, although the engineering properties of RA concrete containing SCMs was low at the age of 28 days. The thermogravimetric (TG) analysis indicated that the RHA is more effective as a pozzolanic additive than POFA and POCP. The CO2 emissions from RA concrete were reduced by approximately 29% when it was incorporated with 30% SCM, where the eco-strength efficiency showed the highest values at 20% cement replacement level of 20%. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据