4.7 Article

Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution

期刊

JOURNAL OF CLEANER PRODUCTION
卷 83, 期 -, 页码 413-419

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jclepro.2014.07.006

关键词

Green synthesis; Nitrate removal; Iron nanoparticles; Characterization; Mechanism; Eutrophication

资金

  1. Fujian Minjiang Fellowship from Fujian Normal University

向作者/读者索取更多资源

Since water pollution associated with high concentrations of nitrate poses serious threats to aquatic ecosystems and can eventually lead to eutrophication, the removal of nitrate, particularly in a large scale context is still a challenge. To address it, this study proposed that iron nanoparticles (Fe NPs) synthesized by green tea (GT-Fe) and eucalyptus leaves (EL-Fe) extracts, which regarded as cleaner productions can be used for the efficient removal of nitrate. Scanning electron microscopy (SEM) and X-ray energy-dispersive spectrometer (EDS) confirmed the successful synthesis of spheroidal iron nanoparticles. Meanwhile, X-ray diffraction (XRD) and Fourier Transform Infrared spectrometer (FTIR) indicated the formation of Fe-iron oxide core-shell NPs with polyphenols as a capping/stabilizing agent. Batch experiment showed that 59.7% and 41.4% of nitrate was removed by GT-Fe and EL-Fe NPs, compared to the 87.6% and 11.7% that was removed using zero-valent iron nanoparticles (nZVI) and Fe3O4 nanoparticles, respectively. Nevertheless, reactivity of nZVI decreased 2.1-fold after being aged in air for two months, whilst GT-Fe and EL-Fe NPs almost remain the same. Additionally, the kinetics study indicated that the nitrate removal process better fitted to the pseudo-second-order adsorption model, where the q(e) was 13.06 mg/g for GT-Fe and 9.698 mg/g for EL-Fe NPs. Based above, a removal mechanism dominated by adsorption and co-precipitation process with subsequently reduction was proposed. Finally, applications of these as-prepared green Fe NPs in swine wastewater demonstrated a promising environmental pollution management option for large scale eutrophic wastewater treatment. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据