4.5 Article

ENHANCED ANGIOGENESIS PROMOTED BY HUMAN UMBILICAL MESENCHYMAL STEM CELL TRANSPLANTATION IN STROKED MOUSE IS NOTCH1 SIGNALING ASSOCIATED

期刊

NEUROSCIENCE
卷 290, 期 -, 页码 288-299

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2015.01.038

关键词

stroke; angiogenesis; human umbilical mesenchymal stem cells; Notch1 signaling; Hes1; VEGF-A

资金

  1. Natural Science Foundation of China [31171016, 31200817]

向作者/读者索取更多资源

Cellular therapy has provided hope for restoring neurological function post stroke through promoting endogenous neurogenesis, angiogenesis and synaptogenesis. The current study was based on the observation that transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) promoted the neurological function improvement in stroked mice and meanwhile enhanced angiogenesis in the stroked hemisphere. Grafted hUCMSCs secreted human vascular endothelial growth factor A (VEGF-A). Notch1 signaling was activated after stroke and also in the grafted hUCMSCs. To address the potential mechanism that might mediate such pro-angiogenic effect, we established a hUCMSC-neuron co-culture system. Neurons were subjected to oxygen glucose deprivation (OGD) injury before co-culturing to mimic the in vivo cell transplantation. Consistent with the in vivo data, co-culture medium claimed from hUCMSC-OGD neuron co-culture system significantly promoted the capillary-like tube formation of brain-derived endothelial cells. Moreover, coincident with our in vivo data, Notch 1 signaling activation was detected in hUCMSCs after co-cultured with OGD neurons as demonstrated by the up-regulation of key Notch1 signaling components Notch1 and Notch1 intercellular domain (NICD). In addition, OGD-neuron co-culture also increased the VEGF-A production by hUCMSCs. To verify whether Notch1 activation was involved in the pro-angiogenic effect, gamma-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) was added into the co-culture medium before co-culture. It turned out that DAPT significantly prevented the Notch1 activation in hUCMSCs after co-culture with OGD neurons. More importantly, the pro-angiogenic effect of hUCMSCs was remarkably abolished by DAPT addition as demonstrated by inhibited capillary-like tube formation and less VEGF-A production. Regarding how Notch1 signaling was linked with VEGF-A secretion, we provided some clue that Notch1 effector Hes1 mRNA expression was significantly up-regulated by OGD-neuron co-culturing and down-regulated after additional treatment of DAPT. In summary, our data provided evidence that the VEGF-A secretion from hUCMSCs after being triggered by OGD neurons is Notch1 signaling associated. This might be a possible mechanism that contributes to the angiogenic effect of hUCMSC transplantation in stroked brain. (C) 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据