4.6 Article

Facile preparation of protein stationary phase based on polydopamine/graphene oxide platform for chip-based open tubular capillary electrochromatography enantioseparation

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1323, 期 -, 页码 135-142

出版社

ELSEVIER
DOI: 10.1016/j.chroma.2013.11.048

关键词

Chip-based OT-CEC; PDA/GO/BSA; Amino acids enantiomers; Peptide enantiomers; Enantioseparations

资金

  1. Natural Science Foundation of China [21065006, 21163014, 21265012]
  2. Program for New Century Excellent Talents in University [NCET-11-1002]

向作者/读者索取更多资源

A novel chip-based enantioselective open-tubular capillary electrochromatography (OT-CEC) was developed employing bovine serum albumin (BSA) conjugated polydopamine graphene oxide (PDA/GO) nanocomposites (PDA/GO/BSA) as stationary phase. After the poly(dimethylsiloxane) (PDMS) microfluidic chip was filled with a freshly prepared solution containing dopamine and graphene oxide, PDA/GO nanocomposites were formed and deposited on the inner wall of microchannel as permanent coating via the oxidation of dopamine by the oxygen dissolved in the solution. The PDA/GO-coated PDMS microchips not only have the adhesion of PDA that make them easily immobilized in the microchannel, but also have the larger surface and excellent biocompatibility of graphene which can incorporate much more biomolecules and well maintain their biological activity. In addition, incorporation of GO in PDA film can make surface morphology more rough, which is beneficial for enhancing the loading capacity of proteins in the microchannels and increasing sample capacity of OT-CEC columns. BSA was stably immobilized in the PDMS microchannel to fabricate a protein-stationary phase. Compared with the native PDMS microchannels, the modified surfaces exhibited much better wettability, more stable electroosmotic mobility, and less nonspecific adsorption. The efficient separation of chiral amino acids (tryptophan and threonine) and chiral dipeptide demonstrate that the constructed OT-CEC columns own ideal enantioselectivity. The presented strategy using PDA/GO coating as a versatile platform for facile conjugation of proteins may offer new processing strategies to prepare a functional surface designed on microfluidic chips. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据