4.6 Article

Fast and efficient size-based separations of polymers using ultra-high-pressure liquid chromatography

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1218, 期 11, 页码 1509-1518

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2011.01.053

关键词

Ultra-high-pressure liquid chromatography; Fast size-exclusion chromatography; Hydrodynamic chromatography; Polystyrene standards; Slalom chromatography; Deborah number

资金

  1. Dutch Polymer Institute [597]

向作者/读者索取更多资源

Ultra-high-pressure liquid chromatography (UHPLC) has great potential for the separations of both small molecules and polymers. However, the implementation of UHPLC for the analysis of macromolecules invokes several problems. First, to provide information on the molecular-weight distribution of a polymer, size-exclusion (SEC) columns with specific pore sizes are needed. Development of packing materials with large pore diameters and pore volumes which are mechanically stable at ultra-high-pressures is a technological challenge. Additionally, narrow-bore columns are typically used in UHPLC to minimize the problem of heat dissipation. Such columns pose stringent requirements on the extra-column dispersion, especially for large (slowly diffusing) molecules. Finally, UHPLC conditions generate high shear rates, which may affect polymer chains. The possibilities and limitations of UHPLC for size-based separations of polymers are addressed in the present study. We demonstrate the feasibility of conducting efficient and very fast size-based separations of polymers using conventional and wide-bore (4.6 mm I.D.) UHPLC columns. The wider columns allow minimization of the extra-column contribution to the observed peak widths down to an insignificant level. Reliable SEC separations of polymers with molecular weights up to ca. 50 kDa are achieved within less than 1 min at pressures of about 66 MPa. Due to the small particles used in UHPLC it is possible to separate high-molecular-weight polymers (50 kDa <= M-r <= 1-3 MDa, upper limit depends on the flow rate) in the hydrodynamic-chromatography (HOC) mode. Very fast and efficient HOC separations are presented. For very large polymer molecules (typically larger than several MDa, depending on the flow rate) two chromatographic peaks are observed. This is attributed to the onset of molecular deformation at high shear rates and the simultaneous actions of hydrodynamic and slalom chromatography. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据