4.6 Article

Development of a novel ultrasound-assisted surfactant-enhanced emulsification microextraction method and its application to the analysis of eleven polycyclic aromatic hydrocarbons at trace levels in water

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1218, 期 18, 页码 2476-2482

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2011.02.049

关键词

Ultrasound-assisted surfactant-enhanced emulsification microextraction; High performance liquid chromatography; Polycyclic aromatic hydrocarbons; Water samples

资金

  1. The National Natural Science Foundation of China [30971948]
  2. The Scientific and Technological Brainstorm Project of Wuhan [200760423155]

向作者/读者索取更多资源

A novel ultrasound-assisted surfactant-enhanced emulsification microextraction (UASEME) technique has been proposed by using low-density extraction solvents. In the proposed technique, Tween 80 and cyclohexane were injected into 5-mL glass test tubes with conical bottoms, containing 5.00 mL of a water sample that was located inside the ultrasonic bath. When the extraction process was finished, the glass test tube was sealed with a rubber plug and then placed upside down in a centrifuge. The finely dispersed droplets of cyclohexane collected at the conical bottom of test tube because the density of cyclohexane is less than of water, and the PAHs were concentrated in the cyclohexane. Next, 5 mu L of the cyclohexane that collected at the conical bottom was removed using a 10-mu L microsyringe and injected into high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) for analysis. The proposed method avoided the use of chlorinated solvents, which have been widely used as extraction solvents in a normal UASEME assay. Parameters that affected the extraction efficiency, such as the type and volume of the extraction solvent, the type and concentration of the surfactant, and the ultrasound emulsification time and salt addition, were investigated and optimised for the method. Under the optimum conditions, the enrichment factors ranged between 90 and 247. The limits of detection of the method were 0.6-62.5 ng L-1. Good recoveries and repeatability of the method for the eleven PAHs were also obtained. The proposed UASEME technique has been demonstrated to be simple, practical and environmentally friendly for the determination of PAH residues in real water samples. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据