4.6 Article

Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: A study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1218, 期 7, 页码 882-895

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2010.10.073

关键词

Hydrophilic interaction chromatography; Ligand surface density; Mixed-mode chromatography; Retention mechanisms; Selectivity; Silanol interactions

资金

  1. Christian Doppler Research Society
  2. industry partners Merck KGaA (Darmstadt, Germany)
  3. AstraZeneca (Molndal, Sweden)
  4. Sandoz (Kundl, Austria)

向作者/读者索取更多资源

The separation properties of five silica packings bonded with 1-[3-(trimethoxysilyl)propyl]urea in the range of 0-3.67 mu mol m(-2) were investigated in the hydrophilic interaction chromatography (HILIC) elution mode. An increase of the ligand surface density promoted retention of non-charged polar compounds and even more so for acids. An opposite trend was observed for bases, while the amphoteric compound tyrosine exhibited a U-shaped response profile. An overall partitioning retention mechanism was incompatible with these observations: rather, the substantial involvement of adsorptive interactions was implicated. Support for the latter was provided by column-specific changes in analyte retention and concomitant selectivity effects due to variations of salt concentration, type of salt, pH value, organic modifier content, and column temperature. Silica was more selective for separating compounds differing in charge state (e.g. tyramine vs.4-hydroxybenzoic acid), while in cases where structural differences of solutes resided in non-charged polar groups (e.g. tyramine vs. 5-hydroxydopamine, nucleoside vs. nucleobase) more selective separations were obtained on bonded phases. Hierarchical cluster analysis of the home-made urea-type and three commercial amide-type bonded packings evinced considerable differences in separation properties. The present data emphasise that the role of the packing material under HILIC elution conditions is hardly just the polar support for a dynamic coating with a water-enriched layer. Three major retention mechanisms are claimed to be relevant on bare silica and the urea-type bonded packings: (i) HILIC-type partitioning, (ii) HILIC-type weak adsorption such as hydrogen bonding between solutes and ligands or solutes and silanols (potentially influenced by individual degrees of solvation, salt bridging, etc.), (iii) strong electrostatic (ionic) solute-silanol interactions (attractive/repulsive). Even when non-charged polar bonded phases are used, solute-silanol interactions should not be discounted, which makes them a prime parameter to be characterised by HILIC column tests. Multi/mixed-mode type separations seem to be common under HILIC elution conditions, associated with a great deal of selectivity increments. They are accessible and controllable by a careful choice of the type of packing, the mobile phase composition, and the temperature. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据