4.6 Article

Solvent-bar microextraction-Using a silica monolith as the extractant phase holder

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1216, 期 29, 页码 5483-5488

出版社

ELSEVIER
DOI: 10.1016/j.chroma.2009.05.074

关键词

Solvent bar microextraction; Silica monolith; Liquid-phase microextraction; Polycyclic aromatic hydrocarbons

资金

  1. National University of Singapore/Ministry of Education [R-143-000-303-112]

向作者/读者索取更多资源

In this paper, a novel liquid-phase microextraction (LPME) approach, based on solvent-bar microextraction (SBME), was developed in which a silica monolith was used as the extractant solvent holder. Owing to the porous nature of the monolith, the extractant solvent Could be easily held in the material: when the monolith containing the extractant solvent was exposed to the sample solution, analytes Could directly diffuse from the sample Solution into the extractant solvent. Polycyclic aromatic hydrocarbons (PAHs) were used as model analytes to evaluate the procedure. Through the investigation of the effect of agitation speed, extraction time, length of the monolith (that determined the volume of organic extractant solvent) and salt concentration oil extraction efficiency, the following optimal extraction conditions were obtained: stirring at 1000 rpm for 30 min without salt addition using a 4-mm silica monolith. The limits of detection ranged from 3.9 pg/mL to 28.8 pg/mL, with relative standard deviations of between 8.16% and 10.5% on the same silica monolith. The linearity was 0.05-200 ng/mL for fluoranthene and pyrene, and 0.5-200 ng/mL for chrysene and benzo[b]fluoranthene, with acceptable correlation coefficient. When this method was applied for the spiked real river sample, the relative recoveries ranged from 87.1% to 100.7% for the tested PAHs. This method was also compared to polymeric hollow fiber-based SBME and hollow fiber-protected LPME and found to provide better results. Additionally, compared with the polymeric hollow fiber, the silica monolith possesses good resistance to extreme conditions, Such as high temperature and pH, and is more compatible with various organic solvents. This is the first report of an application of a monolithic material for LPME, and as a solvent holder for SBME. It extends the scope of applications of Such materials, to analytical chemistry, specifically to sample preparation. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据