4.6 Article

Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1206, 期 2, 页码 160-165

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2008.07.032

关键词

asymmetrical flow field flow fractionation; optimisation; environmental nanoparticles

向作者/读者索取更多资源

The fractionation of natural nanoparticles by Asymmetrical Flow Field Flow Fractionation (As-Fl-FFF) was optimised by considering the following operating conditions: ionic strength, surfactant concentration and crossflow rate. The method performances such as fractionation recovery and fractionation efficiency were evaluated on a stable solution of colloidal-size natural inorganic particles. The online multi-detection by ultraviolet/visible spectrophotometer (UV) and multi-angle laser light scattering (MALLS) provided the monitoring of the sample during the separation and the evaluation of the fractionation efficiency. The lowest ionic strength and surfactant concentrations (i.e. 10(-3) mol L-1 NH4NO3 and 3 x 10(-4) mol L-1 SDS) allowed to obtain the highest sample recovery and lowest loss of the largest particles. The crossflow rate was investigated in order to avoid significant membrane-sample interaction. The applicability of the fractionation in optimised conditions was evaluated on a natural soil leachate, which was filtrated with different filter cut-offs. Filtration efficiency was stressed by the decrease of the large unfractionated particle influence in the void volume. For the first time, robust operating conditions were proposed to well size-fractionate and characterize soil nanoparticles within a single multi-detection analysis. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据