4.6 Article Proceedings Paper

Determination of basic degradation products of chemical warfare agents in water using hollow fibre-protected liquid-phase microextraction with in-situ derivatisation followed by gas chromatography-mass spectrometry

期刊

JOURNAL OF CHROMATOGRAPHY A
卷 1196, 期 -, 页码 125-132

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chroma.2008.04.027

关键词

hollow fibre; liquid-phase microextraction; silylation; chemical warfare agent degradation products; gas chromatography-mass spectrometry

向作者/读者索取更多资源

Hollow fibre-protected liquid-phase microextraction (HF-LPME) together with gas chromatography-mass spectrometry was, for the first time, investigated for the in-situ derivatisation and analysis of basic degradation products of chemical warfare agents in water samples. The degradation products studied were those of nerve and blister agents, and a psychotomimetic agent. Extractions with in-situ derivatisation were successfully performed using a mixture of solvent and derivatising agent. The protection of the moisture-sensitive derivatising agent was afforded by the hydrophobic hollow fibre. Parameters such as type of derivatising agent, extraction solvent, pH, salt concentration, stirring speed and extraction time were optimised using spiked deionised water samples. The linear range established was between 0.05 and 25 mu g ml(-1) depending on analyte, with squared regression coefficients ranging from 0.9959 to 0.9996. Relative standard deviations (RSDs) ranged from 6% to 10%. As comparison, solid-phase microextraction (SPME) was also evaluated and extraction conditions such as pH, salt concentration, stirring speed and extraction time were optimised. This work also represented the first report of such an in-situ derivatisation approach for SPME of basic analytes. The linear range established was between 0.5 and 25 mu g ml(-1) depending on analyte, with squared regression coefficients ranging from 0.9946 to 0.9998. RSDs ranged from 5% to 22%. The limits of detection of HF-LPME (0.04-0.36 mu g l(-1)) showed improvement over those of SPME (0.06-0.77 mu g l(-1)). (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据