4.7 Article

Improving the Accuracy of Excited-State Simulations of BODIPY and Aza-BODIPY Dyes with a Joint SOS-CIS(D) and TD-DFT Approach

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 10, 期 10, 页码 4574-4582

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct500655k

关键词

-

资金

  1. European Research Council (ERC) [Marches - 278845]
  2. Region des Pays de la Loire [Marches - 278845]
  3. GENCI-CINES/IDRIS [c2013085117, x2013080649]

向作者/读者索取更多资源

BODIPY and aza-BODIPY dyes constitute two key families of organic dyes with applications in both materials science and biology. Previous attempts aiming to obtain accurate theoretical estimates of their optical properties, and in particular of their 0-0 energies, have failed. Here, using time-dependent density functional theory (TD-DFT), configuration interaction singles with a double correction [CIS(D)], and its scaled-opposite-spin variant [SOS-CIS(D)], we have determined the 0-0 energies as well as the vibronic shapes of both the absorption and emission bands of a large set of fluoroborates. Indeed, we have selected 47 BODIPY and 4 aza-BODIPY dyes presenting diverse chemical structures. TD-DFT yields a rather large mean signed error between the experimental and theoretical 0-0 energies with a systematic overshooting of the transition energies (by ca. 0.4 eV). This error is reduced to ca. 0.2 [0.1] eV when the TD-DFT 0-0 energies are corrected with vertical CIS(D) [SOS-CIS(D)] energies. For BODIPY and aza-BODIPY dyes, both CIS(D) and SOS-CIS(D) clearly outperform TD-DFT. The present computational protocol allows accurate data to be obtained for the most relevant properties, that is, 0-0 energies and optical band shapes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据