4.7 Article

Electronic Excitations in Push-Pull Oligomers and Their Complexes with Fullerene from Many-Body Green's Functions Theory with Polarizable Embedding

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 10, 期 8, 页码 3104-3110

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct500479f

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) under the Priority Program Elementary Processes of Organic Photovoltaics [SPP 1355]
  2. BMBF grant MESOMERIE
  3. DFG program [IRTG 1404]

向作者/读者索取更多资源

We present a comparative study of excited states in push-pull oligomers of PCPDTBT and PSBTBT and prototypical complexes with a Coo acceptor using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. We analyze excitations in oligomers up to a length of 5 nm and find that for both materials the absorption energy practically saturates for structures larger than two repeat units due to the localized nature of the excitation. In the bimolecular complexes with C-60, the transition from Frenkel to charge transfer excitons is generally exothermic and strongly influenced by the acceptor's position and orientation. The high CT binding energy of the order of 2 eV results from the lack of an explicit molecular environment. External polarization effects are then modeled in a GW-BSE based QM/MM approach by embedding the donor-acceptor complex into a polarizable lattice. The lowest charge transfer exciton is energetically stabilized by about 0.5 eV, while its binding energy is reduced to about 0.3 eV. We also identify a globally unbound charge transfer state with a more delocalized hole at higher energy while still within the absorption spectrum, which opens another potential pathway for charge separation. For both PCPDTBT and PSBTBT, the energetics are largely similar with respect to absorption and the driving force to form intermediate charge transfer excitations for free charge generation. These results support that the higher power conversion efficiency observed for solar cells using PSBTBT as donor material is a result of molecular packing rather than of the electronic structure of the polymer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据