4.7 Article

Solvent Effects on Excited-State Structures: A Quantum Monte Carlo and Density Functional Study

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 10, 期 12, 页码 5528-5537

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct500723s

关键词

-

资金

  1. ECHO grant of The Netherlands Organisation for Scientific Research (NWO) [712.012.005]
  2. COST Action CODECS
  3. MIUR under project PRIN

向作者/读者索取更多资源

We present the first application of quantum Monte Carlo (QMC) in its variational flavor combined with the polarizable continuum model (PCM) to perform excited-state geometry optimization in solution. Our implementation of the PCM model is based on a reaction field that includes both volume and surface polarization charges and is determined self-consistently with the molecular wave function during the QMC optimization of the solute geometry. For acrolein, acetone, methylenecyclopropene, and the propenoic acid anion, we compute the optimal exited-state geometries in water and compare our results with the structures obtained with second-order perturbation theory (CASPT2) and other correlated methods, and with time-dependent density functional theory (TDDFT). We find that QMC predicts a structural response to solvation in good agreement with CASPT2 with the only exception of the pi -> pi* state of acrolein where the robustness of the QMC geometry must be contrasted to the sensitivity of the perturbation result to the details of the calculation. As regards TDDFT, we show that all investigated functionals systematically overestimate the geometrical changes from the gas phase to solution, sometimes giving bond variations opposite in trend to QMC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据