4.7 Article

Quantum Chemical Free Energies: Structure Optimization and Vibrational Frequencies in Normal Modes

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 9, 期 11, 页码 5038-5045

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct4005504

关键词

-

资金

  1. North German Computing Alliance Berlin - Hannover (HLRN)
  2. Fonds der Chemischen Industrie
  3. Verband der Chemischen Industrie

向作者/读者索取更多资源

A computational protocol is presented that uses normal mode coordinates for structure optimization and for obtaining harmonic frequencies by numerical differentiation. It reduces numerical accuracy problems encountered when density functional theory with plane wave basis sets is applied to systems with flat potential energy surfaces. The approach is applied to calculate Gibbs free energies for adsorption of methane, ethane, and propane on the Bronsted acidic sites of zeolite H-CHA. The values obtained (273.15 K, 0.1 MPa,), -0.25, -5.95, and -16.76 kJ/mol, respectively, follow the trend of the experimental values, which is not the case for results obtained with the standard approach (Cartesian optimization, frequencies from Cartesian distortions). Anharmonicity effects have been approximately taken into account by solving one-dimensional Schrodinger equations along each normal mode. This leads to a systematic increase of the Gibbs free energy of adsorption of 4.5, 5.0, and 3.1 kJ/mol for methane, ethane, and propane, respectively, making adsorption at a given pressure and temperature less likely. This is due to an increase of low vibrational frequencies associated with hindered translations and rotations of the adsorbed molecules and the floppy modes of the zeolite framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据