4.7 Article

Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 9, 期 2, 页码 1282-1293

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct300911a

关键词

-

向作者/读者索取更多资源

Accurate and reliable calculation of protein-ligand binding affinities remains a hotbed of computer-aided drug design research. Despite the potentially large impact FEP (free energy perturbation) may have in drug design projects, practical applications of FEP in industrial contexts have been limited. In this work, we use a recently developed method, FEP/REST (free energy perturbation/replica exchange with solute tempering), to calculate the relative binding affinities for a set of congeneric ligands binding to the CDK2 receptor. We compare the FEP/REST results with traditional FEP/MD (molecular dynamics) results and MM/GBSA (molecular mechanics/Generalized Born Surface Area model) results and examine why FEP/REST performed notably better than these other methods, as well as why certain ligand mutations lead to large increases of the binding affinity while others do not. We also introduce a mathematical framework for assessing the consistency and reliability of the calculations using cycle closures in FEP mutation paths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据