4.7 Article

A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct100489z

关键词

-

向作者/读者索取更多资源

We have constructed a coarse-grained model of crystalline cellulose to be used in molecular dynamics simulations. Using cellobiose from the recently published MARTINI coarse-grained force field for carbohydrates [Lopez, C. A. et al. J. Chem. Theory Comput. 2009, 5, 3195-3210] as a starting point, we have reparameterized the nonbonded interactions to reproduce the partitioning free energies between water and cyclohexane for a series of cellooligomers, cellobiose through cellopentaose. By extrapolating the model to longer cellooligomers, and by assigning special cellulose cellulose nonbonded interactions, we obtain a model which gives a stable, ordered structure in water that closely resembles the crystal structure of cellulose I beta. Furthermore, the resulting model is compatible with an existing coarse-grained force field for proteins. This is demonstrated by a simulation of the motion of the carbohydrate-binding domain of the fungal cellulase Cel7A from Trichoderma reesei on a crystalline cellulose surface. The diffusion coefficient at room temperature is calculated at D-1 = 3.1 x 10(-11) cm(2) s(-1), which is in good agreement with experimental numbers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据