4.7 Article

Dynamic Precision for Electron Repulsion Integral Evaluation on Graphical Processing Units (GPUs)

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct100701w

关键词

-

资金

  1. NSF [CHE-06-26354]
  2. Department of Defense (Office of the Director of Defense Research and Engineering) through a National Security Science and Engineering Faculty
  3. PetaChem, LLC

向作者/读者索取更多资源

It has recently been demonstrated that novel streaming architectures found in consumer video gaming hardware such as graphical processing units (GPUs) are well-suited to a broad range of computations including electronic structure theory (quantum chemistry). Although recent GPUs have developed robust support for double precision arithmetic, they continue to provide 2-8 x more hardware units for single precision. In order to maximize performance on GPU architectures, we present a technique of dynamically selecting double or single precision evaluation for electron repulsion integrals (ERIs) in Hartree-Fock and density functional self-consistent field (SCF) calculations. We show that precision error can be effectively controlled by evaluating only the largest integrals in double precision. By dynamically scaling the precision cutoff over the course of the SCF procedure, we arrive at a scheme that minimizes the number of double precision integral evaluations for any desired accuracy. This dynamic precision scheme is shown to be effective for an array of molecules ranging in size from 20 to nearly 2000 atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据