4.7 Article

Excited-State Studies of Polyacenes: A Comparative Picture Using EOMCCSD, CR-EOMCCSD(T), Range-Separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 7, 期 11, 页码 3686-3693

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct2005165

关键词

-

资金

  1. U.S. Department of Energy's Office of Biological and Environmental Research
  2. Battelle Memorial Institute [DE-AC06-76RLO-1830]
  3. EMSL
  4. Extreme Scale Computing Initiative
  5. DOE-EFRC

向作者/读者索取更多资源

The low-lying excited states (L-a and L-b) of polyacenes from naphthalene to heptacene (N = 2-7) are studied using various time-dependent computational approaches. We perform high-level excited-state calculations using equation of motion coupled cluster with singles and doubles (EOMCCSD) and completely renormalized equation of motion coupled cluster with singles, doubles, and perturbative triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of various range-separated exchange-correlation functionals within linear-response (LR) and real-time (RT) time-dependent density functional theories (TDDFT). As has been reported recently, we find that the range-separated family of functionals addresses the well-documented TDDFT failures in describing these low-lying singlet excited states to a large extent and are as about as accurate as results from EOMCCSD on average. Real-time TDDFT visualization shows that the excited state charged densities are consistent with the predictions of the perimeter free electron orbital (PFEO) model. This corresponds to particle-on-a-ring confinement, which leads to the well-known red-shift of the excitations with acene length. We also use time-dependent semiempirical methods like TD-PM3 and TD-ZINDO, which are capable of handling very large systems. Once reparametrized to match the CR-EOMCCSD(T) results, TD-ZINDO becomes roughly as accurate as range-separated TDDFT, which opens the door to modeling systems such as large molecular assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据