4.7 Article

Kohn-Sham Density Functional Theory Electronic Structure Calculations with Linearly Scaling Computational Time and Memory Usage

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct100611z

关键词

-

资金

  1. Swedish Research Council [623-2009-803]

向作者/读者索取更多资源

We present a complete linear scaling method for hybrid Kohn-Sham density functional theory electronic structure calculations and demonstrate its performance. Particular attention is given to the linear scaling computation of the Kohn-Sham exchange-correlation matrix directly in sparse form within the generalized gradient approximation. The described method makes efficient use of sparse data structures at all times and scales linearly with respect to both computational time and memory usage. Benchmark calculations at the BHandliLYP/3-21G level of theory are presented for polypeptide helix molecules with up to 53 250 atoms. Threshold values for computational approximations were chosen on the basis of their impact on the occupied subspace so that the different parts of the calculations were carried out at balanced levels of accuracy. The largest calculation used 307 204 Gaussian basis functions on a single computer with 72 GB of memory. Benchmarks for three-dimensional water clusters are also included, as well as results using the 6-31G** basis set.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据