4.7 Article

Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct200557r

关键词

-

资金

  1. AMBER community
  2. NIH [GM22939]

向作者/读者索取更多资源

All-atom force fields are important for predicting thermodynamic, structural, and dynamic properties of RNA. In this paper, results are reported for thermodynamic integration calculations of free energy differences of duplex formation when CG pairs in the RNA duplexes r(CCGG)(2), r(GGCC)(2), r(GCGC)(2), and r(CGCG)(2) are replaced by isocytidine isoguanosine (iCiG) pairs. Agreement with experiment was improved when epsilon/zeta, alpha/beta, chi, and x torsional parameters in the AMBER99 force field were revised on the basis of quantum mechanical calculations. The revised force field, AMBER99TOR, brings free energy difference predictions to within 1.3, 1.4, 2.3, and 2.6 kcal/mol at 300 K, respectively, compared to experimental results for the thermodynamic cycles of CCGG -> iCiCiGiG, GGCC -> iGiGiCiC, GCGC -> iGiCiGiC, and CGCG -> iCiGiCiG. In contrast, unmodified AMBER99 predictions for GGCC -> iGiGiCiC and GCGC -> iGiCiGiC differ from experiment by 11.7 and 12.6 kcal/mol, respectively. In order to test the dynamic stability of the above duplexes with AMBER99TOR, four individual SO ns molecular dynamics (MD) simulations in explicit solvent were run. All except r(CCGG)(2) retained A-form conformation for >= 82% of the time. This is consistent with NMR spectra of r(iGiGiCiC)(2), which reveal an A-form conformation. In MD simulations, r(CCGG)(2) retained A-form conformation 52% of the time, suggesting that its terminal base pairs may fray. The results indicate that revised backbone parameters improve predictions of RNA properties and that comparisons to measured sequence dependent thermodynamics provide useful benchmarks for testing force fields and computational methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据