4.7 Article

All-Electron Scalar Relativistic Basis Sets for the Actinides

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct100736b

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

Increasing interest in the computational modeling of actinide compounds creates the need for alternative choices when in comes to fine tuning the computational methodology in order to best fit the problem at hand. All-electron scalar relativistic density functional theory can be a useful approach for a variety of actinide systems and would benefit from atomic basis sets geared to that level of theory. In this paper we present segmented all-electron relativistically contracted (SARC) basis sets for the complete actinide series Ac-89-Lr-103, optimized for use with the popular Douglas-Kroll-Hess to the second order and zeroth-order regular approximation scalar relativistic Hamiltonians. The quality of the SARC basis sets is assessed in terms of their intrinsic incompleteness and contraction errors, with respect to total energies, orbital properties, and ionization energies. Calculations on diatomic Ac and Lr molecules confirm that the valence-space construction results in negligible basis set superposition errors. The performance of the basis sets is further evaluated for molecular geometries, vibrational frequencies, and bond dissociation energies in an illustrative study of uranium fluorides UFn (n = 1-6).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据