4.7 Article

Explicit Hydrogen-Bond Potentials and Their Application to NMR Scalar Couplings in Proteins

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct9005695

关键词

-

资金

  1. Swiss National Science Foundation [200021-117810]

向作者/读者索取更多资源

Hydrogen bonds (H bonds) are fundamental for the stability, structure, and dynamics of chemically and biologically relevant systems. One of the direct means to detect H bonds in proteins is NMR spectroscopy. As H bonds are dynamic in nature, atomistic simulations offer a meaningful way to characterize and analyze properties of hydrogen bonds, provided a sufficiently accurate interaction potential is available. Here, we use explicit H-bond potentials to investigate scalar coupling constants (h3)J(NC') and characterize the conformational ensemble for increasingly accurate intermolecular potentials. By considering a range of proteins with different overall topology a general procedure to improve the hydrogen-bonding potential (morphing potentials) based on experimental information is derived. The robustness of this approach is established through explicit simulations in full solvation and comparison with experimental results. The H-bond potentials used here lead to more directional H bonds than conventional electrostatic representations employed in molecular mechanics potentials. It is found that the optimized potentials lead to H-bond geometries in remarkable agreement with previous ab initio and knowledge-based approaches to H bonds in model systems and in proteins. This suggests that, by combining theory, computation, and experimental data, H-bonding potentials can be improved and are potentially useful to better study coupling, energy transfer, and allosteric communication in proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据