4.7 Article

Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 5, 期 10, 页码 2798-2808

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ct900292r

关键词

-

资金

  1. GTL Program, Office of Biological and Environmental Research, U.S. Department of Energy
  2. BioEnergy Science Center
  3. FWP ERKP704
  4. Office of Biological and Environmental Research
  5. DOE INCITE
  6. Office of Science

向作者/读者索取更多资源

A strategy is described for a fast all-atom molecular dynamics simulation of multimillion-atom biological systems on massively parallel supercomputers. The strategy is developed using benchmark systems of particular interest to bioenergy research, comprising models of cellulose and lignocellulosic biomass in an aqueous solution. The approach involves using the reaction field (RF) method for the computation of long-range electrostatic interactions, which permits efficient scaling on many thousands of cores. Although the range of applicability of the RF method for biomolecular systems remains to be demonstrated, for the benchmark systems the use of the RF produces molecular dipole moments, Kirkwood G factors, other structural properties, and mean-square fluctuations in excellent agreement with those obtained with the commonly used Particle Mesh Ewald method. With RF, three million- and five million-atom biological systems scale well up to similar to 30k cores, producing similar to 30 ns/day, Atomistic simulations of very large systems for time scales approaching the microsecond would, therefore, appear now to be within reach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据