4.7 Article

Connectedness percolation of hard convex polygonal rods and platelets

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 149, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5040185

关键词

-

资金

  1. Dutch Ministry of Education, Culture and Science (OCW)
  2. NWO-VICI grant

向作者/读者索取更多资源

The properties of polymer composites with nanofiller particles change drastically above a critical filler density known as the percolation threshold. Real nanofillers, such as graphene flakes and cellulose nanocrystals, are not idealized disks and rods but are often modeled as such. Here we investigate the effect of the shape of the particle cross section on the geometric percolation threshold. Using connectedness percolation theory and the second-virial approximation, we analytically calculate the percolation threshold of hard convex particles in terms of three single-particle measures. We apply this method to polygonal rods and platelets and find that the universal scaling of the percolation threshold is lowered by decreasing the number of sides of the particle cross section. This is caused by the increase of the surface area to volume ratio with decreasing number of sides. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据