4.7 Article

Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 141, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4891530

关键词

-

资金

  1. EPSRG [EP/J001481/1]
  2. NSF [CHE-11-24515]
  3. Direct For Mathematical & Physical Scien
  4. Division Of Chemistry [1124515] Funding Source: National Science Foundation
  5. Engineering and Physical Sciences Research Council [EP/I014500/1, EP/J001481/1] Funding Source: researchfish
  6. EPSRC [EP/J001481/1, EP/I014500/1] Funding Source: UKRI

向作者/读者索取更多资源

We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as cloning, in analogy to the spawning procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, trains, as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据