4.7 Article

Communication: Different behavior of Young's modulus and fracture strength of CeO2: Density functional theory calculations

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 140, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4869515

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [24550005, 24686017] Funding Source: KAKEN

向作者/读者索取更多资源

In this Communication, we use density functional theory (DFT) to examine the fracture properties of ceria (CeO2), which is a promising electrolyte material for lowering the working temperature of solid oxide fuel cells. We estimate the stress-strain curve by fitting the energy density calculated by DFT. The calculated Young's modulus of 221.8 GPa is of the same order as the experimental value, whereas the fracture strength of 22.7 GPa is two orders of magnitude larger than the experimental value. Next, we combine DFT and Griffith theory to estimate the fracture strength as a function of a crack length. This method produces an estimated fracture strength of 0.467 GPa, which is of the same order as the experimental value. Therefore, the fracture strength is very sensitive to the crack length, whereas the Young's modulus is not. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据