4.7 Article

Theory of optical transitions in conjugated polymers. I. Ideal systems

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 141, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4897984

关键词

-

资金

  1. Zvi and Ofra Meitar Magdalen Graduate Scholarship

向作者/读者索取更多资源

We describe a theory of linear optical transitions in conjugated polymers. The theory is based on three assumptions. The first is that the low-lying excited states of conjugated polymers are Frenkel excitons coupled to local normal modes, described by the Frenkel-Holstein model. Second, we assume that the relevant parameter regime is (h) over bar omega << J, i.e., the adiabatic regime, and thus the Born-Oppenheimer factorization of the electronic and nuclear degrees of freedom is generally applicable. Finally, we assume that the Condon approximation is valid, i.e., the exciton-polaron wavefunction is essentially independent of the normal modes. Using these assumptions we derive an expression for an effective Huang-Rhys parameter for a chain (or chromophore) of N monomers, given by S(N) = S(1)/IPR, where S(1) is the Huang-Rhys parameter for an isolated monomer. IPR is the inverse participation ratio, defined by IPR = (Sigma(n)|Psi(n)|(4))(-1), where Psi(n) is the exciton center-of-mass wavefunction. Since the IPR is proportional to the spread of the exciton center-of-mass wavefunction, this is a key result, as it shows that S(N) decreases with chain length. As in molecules, in a polymer S(N) has two interpretations. First, (h) over tilde omega S(N) is the relaxation energy of an excited state caused by its coupling to the normal modes. Second, S(N) appears in the definition of an effective Franck-Condon factor, F-0v (N) = S(N)(v) exp(-S(N))/v! for the vth vibronic manifold. We show that the 0 - 0 and 0 - 1 optical intensities are proportional to F-00(N) and F-01(N), respectively, and thus the ratio of the 0 - 1 to 0 - 0 absorption and emission intensities are proportional to S(N). These analytical results are checked by extensive DMRG calculations and found to be generally valid, particularly for emission. However, for large chain lengths higher-lying quasimomentum exciton states become degenerate with the lowest vibrational excitation of the lowest exciton state. When this happens there is mixing of the electronic and nuclear states and a partial breakdown of the Born-Oppenheimer approximation, meaning that the ratio of the 0 - 0 to 0 - 1 absorption intensities no longer increases as fast as the IPR. When (h) over bar omega/J = 0.1, a value applicable to phenyl-based polymers, the critical value of N is similar to 20 monomers. (c) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据