4.7 Article

Catalytic activity of methanol in all-vapor subsecond clathrate-hydrate formation

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 140, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4871879

关键词

-

资金

  1. National Science Foundation [CHE-1213732]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [1213732] Funding Source: National Science Foundation

向作者/读者索取更多资源

Methanol's property as a catalyst in the formation of gas clathrate hydrates has been recognized for several years and was recently employed in a broad ranging study [K. Shin, K. A. Udachin, I. L. Moudrakovski, D. M. Leek, S. Alavi, C. I. Ratcliffe, and J. A. Ripmeester, Proc. Natl. Acad. Sci. U. S. A. 110, 8437 (2013)]. A new measure of that activity is offered here from comparative rates of formation of methanol (MeOH) clathrate hydrates within our all-vapor aerosol methodology for which tetrahydrofuran (THF) and other small ethers have set a standard for catalytic action. We have previously described numerous examples of the complete conversion of warm all-vapor mixtures to aerosols of gas clathrate hydrates on a sub-second time scale, generally with the catalyst confined primarily to the large cage of either structure-I (s-I) or structure-II (s-II) hydrates. THF has proven to be the most versatile catalyst for the complete subsecond conversion of water to s-II hydrate nanocrystals that follows pulsing of appropriate warm vapor mixtures into a cold chamber held in the 140-220 K range. Here, the comparative ability of MeOH to catalyze the formation of s-I hydrates in the presence of a small-cage help-gas, CO2 or acetylene, is examined. The surprising result is that, in the presence of either help gas, CH-formation rates appear largely unchanged by a complete replacement of THF by MeOH in the vapor mixtures for a chamber temperature of 170 K. However, as that temperature is increased, the dependence of effective catalysis by MeOH on the partial pressure of help gases also increases. Nevertheless, added MeOH is shown to markedly accelerate the s-II THF-CO2 CH formation rate at 220 K. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据