4.7 Article

Molecular-dynamics simulations of thin polyisoprene films confined between amorphous silica substrates

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 140, 期 11, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4868231

关键词

-

资金

  1. FP7-NMP-2011-EU-RUSSIA program CompnanoComp [295355]
  2. FP7 EU-Russia coordinated project Multiscale computational approach to the design of polymermatrix nanocomposites [16.523.12.3001]

向作者/读者索取更多资源

Constant temperature-constant pressure (NpT) molecular-dynamics computer simulations have been carried out for the united-atom model of a non-crosslinked (1,4) cis-polyisoprene (PI) melt confined between two amorphous, fully coordinated silica surfaces. The Lennard-Jones 12-6 potential was implemented to describe the polymer-silica interactions. The thickness H of the produced PI-silica film has been varied in a wide range, 1 < H/R-g < 8, where R-g is the individual PI chain radius of gyration measured under the imposed confinement. After a thorough equilibration, the PI film stratified structure and polymer segmental dynamics have been studied. The chain structure in the middle of the films resembles that in a corresponding bulk, but the polymer-density profile shows a pronounced ordering of the polymer segments in the vicinity of silica surfaces; this ordering disappears toward the film middles. Tremendous slowing down of the polymer segmental dynamics has been observed in the film surface layers, with the segmental relaxation more than 150 times slower as compared to that in a PI bulk. This effect increases with decreasing the polymer-film thickness. The segmental relaxation in the PI film middles shows additional relaxation process which is absent in a PI bulk. Even though there are fast relaxation processes in the film middle, its overall relaxation is slower as compared to that in a bulk sample. The interpretation of the results in terms of polymer glassy bridges has been discussed. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据