4.7 Article

Self-replenishing ability of cross-linked low surface energy polymer films investigated by a complementary experimental-simulation approach

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 140, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4868989

关键词

-

资金

  1. Dutch Ministry of Economic Affairs, Agriculture and Innovation via the IOP-Self-Healing materials program [SHM08710]

向作者/读者索取更多资源

Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. The same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new air beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiplehealing events, the self-replenishing efficiency, and the minimum healing agent concentration for a maximum recovery. (c) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据