4.7 Article

Reaction dynamics of O(1D) + HCOOD/DCOOH investigated with time-resolved Fourier-transform infrared emission spectroscopy

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 141, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4897418

关键词

-

资金

  1. Ministry of Science and Technology of Taiwan [MOST103-2745-M-009-001-ASP]
  2. Ministry of Education, Taiwan (Aim for the Top University Plan of National Chiao Tung University)
  3. NSC

向作者/读者索取更多资源

We investigated the reaction dynamics of O(D-1) towards hydrogen atoms of two types in HCOOH. The reaction was initiated on irradiation of a flowing mixture of O-3 and HCOOD or DCOOH at 248 nm. The relative vibration-rotational populations of OH and OD (1 <= upsilon <= 4, J <= 15) states were determined from time-resolved IR emission recorded with a step-scan Fourier-transform spectrometer. In the reaction of O(D-1) + HCOOD, the rotational distribution of product OH is nearly Boltzmann, whereas that of OD is bimodal. The product ratio [OH]/[OD] is 0.16 +/- 0.05. In the reaction of O(D-1) + DCOOH, the rotational distribution of product OH is bimodal, but the observed OD lines are too weak to provide reliable intensities. The three observed OH/OD channels agree with three major channels of production predicted with quantum-chemical calculations. In the case of O(D-1) + HCOOD, two intermediates HOC(O)OD and HC(O)OOD are produced in the initial C-H and O-D insertion, respectively. The former undergoes further decomposition of the newly formed OH or the original OD, whereas the latter produces OD via direct decomposition. Decomposition of HOC(O)OD produced OH and OD with similar vibrational excitation, indicating efficient intramolecular vibrational relaxation, IVR. Decomposition of HC(O)OOD produced OD with greater rotational excitation. The predicted [OH]/[OD] ratio is 0.20 for O(D-1) + HCOOD and 4.08 for O(D-1) + DCOOH; the former agrees satisfactorily with experiments. We also observed the upsilon(3) emission from the product CO2. This emission band is deconvoluted into two components corresponding to internal energies E = 317 and 96 kJ mol(-1) of CO2, predicted to be produced via direct dehydration of HOC(O)OH and secondary decomposition of HC(O)O that was produced via decomposition of HC(O)OOH, respectively. (C) 2014 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据