4.7 Article

Solid-liquid coexistence in small systems: A statistical method to calculate melting temperatures

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 139, 期 9, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4819792

关键词

-

资金

  1. ONR [N00014-12-1-0196]
  2. NSF

向作者/读者索取更多资源

We propose an efficient and accurate scheme to calculate the melting point (MP) of materials. This method is based on the statistical analysis of small-size coexistence molecular dynamics simulations. It eliminates the risk of metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated MPs. The method converges to the exact result in the limit of large system size. An accuracy within 100 K in MP is usually achieved when simulation contains more than 100 atoms. Density functional theory examples of tantalum, high-pressure sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which the MP is a design criterion. (C) 2013 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据