4.7 Article

Out-of-equilibrium catalysis of chemical reactions by electronic tunnel currents

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4797495

关键词

-

资金

  1. Francqui Foundation and Programme d'Actions de Recherche Concertee de la Communaute Francaise, Belgium
  2. Deutsche Forschungsgemeinschaft [SFB 658]

向作者/读者索取更多资源

We present an escape rate theory for current-induced chemical reactions. We use Keldysh nonequilibrium Green's functions to derive a Langevin equation for the reaction coordinate. Due to the out of equilibrium electronic degrees of freedom, the friction, noise, and effective temperature in the Langevin equation depend locally on the reaction coordinate. As an example, we consider the dissociation of diatomic molecules induced by the electronic current from a scanning tunnelling microscope tip. In the resonant tunnelling regime, the molecular dissociation involves two processes which are intricately interconnected: a modification of the potential energy barrier and heating of the molecule. The decrease of the molecular barrier (i.e., the current induced catalytic reduction of the barrier) accompanied by the appearance of the effective, reaction-coordinate-dependent temperature is an alternative mechanism for current-induced chemical reactions, which is distinctly different from the usual paradigm of pumping vibrational degrees of freedom. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4797495]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据