4.7 Article

Analysis of the forward-backward trajectory solution for the mixed quantum-classical Liouville equation

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 138, 期 13, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4798221

关键词

-

资金

  1. Natural Sciences and Engineering Council of Canada
  2. Canada Foundation for Innovation under the auspices of Compute Canada
  3. Government of Ontario, Ontario Research Fund-Research Excellence
  4. University of Toronto

向作者/读者索取更多资源

Mixed quantum-classical methods provide powerful algorithms for the simulation of quantum processes in large and complex systems. The forward-backward trajectory solution of the mixed quantum-classical Liouville equation in the mapping basis [C.-Y. Hsieh and R. Kapral, J. Chem. Phys. 137, 22A507 (2012)] is one such scheme. It simulates the dynamics via the propagation of forward and backward trajectories of quantum coherent state variables, and the propagation of bath trajectories on a mean-field potential determined jointly by the forward and backward trajectories. An analysis of the properties of this solution, numerical tests of its validity and an investigation of its utility for the study of nonadiabtic quantum processes are given. In addition, we present an extension of this approximate solution that allows one to systematically improve the results. This extension, termed the jump forward-backward trajectory solution, is analyzed and tested in detail and its various implementations are discussed. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798221]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据